- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Luna, Jessica (3)
-
Gully-Santiago, Michael (2)
-
MacLeod, Morgan (2)
-
Mahadevan, Suvrath (2)
-
Morley, Caroline V. (2)
-
Oklopčić, Antonija (2)
-
Vanderburg, Andrew (2)
-
Zhang, Zhoujian (2)
-
Bowler, Brendan P. (1)
-
Bowler, Brendan_P (1)
-
Cochran, William D. (1)
-
Cochran, William_D (1)
-
Endl, Michael (1)
-
Ganesh, Aishwarya (1)
-
Jaffe, Daniel T. (1)
-
Johns-Krull, Christopher M. (1)
-
Joon Lee, Jae (1)
-
Krolikowski, Daniel M. (1)
-
Krolikowski, Daniel_M (1)
-
Llama, Joe (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 1013g s−1, with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter.more » « less
-
Luna, Jessica L.; Morley, Caroline V. (, The Astrophysical Journal)
-
Zhang, Zhoujian; Morley, Caroline V.; Gully-Santiago, Michael; MacLeod, Morgan; Oklopčić, Antonija; Luna, Jessica; Tran, Quang H.; Ninan, Joe P.; Mahadevan, Suvrath; Krolikowski, Daniel M.; et al (, Science Advances)Long-baseline monitoring of the HAT-P-32Ab system reveals helium escaping through tidal tails 50 times the size of the planet.more » « less
-
Stahl, Asa G.; Tang, Shih-Yun; Johns-Krull, Christopher M.; Prato, L.; Llama, Joe; Mace, Gregory N.; Joon Lee, Jae; Oh, Heeyoung; Luna, Jessica; Jaffe, Daniel T. (, The Astronomical Journal)null (Ed.)
An official website of the United States government
